
STS-Tool: Specifying and Reasoning over
Socio-Technical Security Requirements

Elda Paja1, Fabiano Dalpiaz2, Mauro Poggianella1,
Pierluigi Roberti1, and Paolo Giorgini1

1 University of Trento, Italy – {elda.paja, mauro.poggianella,

pierluigi.roberti, paolo.giorgini}@unitn.it
2 University of Toronto, Canada – dalpiaz@cs.toronto.edu

Abstract. STS-Tool is the modelling and analysis support tool for STS-
ml, our proposed actor- and goal-oriented security requirements mod-
elling language for Socio-Technical Systems (STSs). STS-Tool allows de-
signers to model an STS through high-level primitives, to express security
constraints over the interactions between the actors in the STS, as well
as to derive security requirements once the modelling is completed. The
tool features a set of automated reasoning techniques for (i) checking if a
given STS-ml model is well-formed, and (ii) determining if the specifica-
tion of security requirements is consistent, that is, there are no conflicts
among security requirements. We have implemented these techniques us-
ing disjuntive datalog programs.

1 The Socio-Technical Security modelling language

The Socio-Technical Security modelling language (STS-ml) [1] is an i* based
security requirements modelling language. STS-ml includes high-level organisa-
tional primivites such as actor, goal, delegation, etc. A distinguishing feature
of STS-ml is the ability to relate security requirements to interactions: actors’
security needs constrain the interactions they enter into with other actors. Se-
curity requirements are mapped to social commitments [3]—contracts among
actors—that actors in the STS shall comply with at runtime.

STS-ml modelling uses three complementary views, in which the analyst
examines different types of interactions among actors.

The formal semantics of STS-ml [2] defines the behavior of STS-ml concepts
and relationships, allowing to perform: (i) well-formedness analysis to determine
if the model complies with well-formedness rules that are set to preserve the
semantics of the STS-ml primitives (e.g., decompositions are not cyclic), and (ii)
security analysis, i.e., if there are potential conflicts of security requirements.

2 STS-Tool

STS-Tool is the modelling and analysis support tool for STS-ml. It is an Eclipse
Rich Client Platform application written in Java, it is distributed as a com-
pressed archive for multiple platforms (Win 32/64, Mac OS X, Linux), and it is

freely available for download from http://www.sts-tool.eu. The website in-
cludes extensive documentation including manuals, video tutorials, and lectures.
STS-Tool has the following features:

– Diagrammatic: the tool enables the creation (drawing) of diagrams. Apart
from typical create/modify/save/load operations, the tool also supports:
• Providing different views on a diagram, specifically: social view, infor-

mation view, authorisation view. Each view shows specific elements and
hides others, while keeping always visible elements that serve as connec-
tion points between the views (e.g., roles and agents). Inter-view con-
sistency is ensured by for instance propagating insertion or deletion of
certain elements to all views.

• Ensuring diagram validity (online): the models are checked for syntactic/
well-formedness validity while being drawn.

• Exporting diagrams to different file formats (png, jpg, pdf, svg, etc.).
– Automatic derivation of security requirements: security requirements are

generated from a model as relationships between a requester and a respon-
sible actor for the satisfaction of a security need. Security requirements can
be sorted or filtered according to their different attributes.

– Automated reasoning
• Offline well-formedness analysis: some well-formedness rules of STS-ml

are computationally too expensive for online verification, or their contin-
uous analysis would limit the flexibility of the modelling activities. Thus,
some analyses about well-formedness are performed upon explicit user
request. In Fig. 1, offline well-formedness analysis has found no errors.

• Security analysis: verify (i) if the security requirements specification is
consistent—no requirements are potentially conflicting; (ii) if the dia-
gram allows the satisfaction of the specified security requirements. This
analysis is implemented in disjunctive Datalog and consists of comparing
the possible actor behaviors that the model describes against the security
requirements. The results are enumerated in a tabular form below the
diagram, and rendered visible on the diagram itself when selected (see
Fig. 1). A textual description provides details on the identified conflicts.

– Generating requirements documents: the modelling process terminates with
the generation of a security requirements document, which supports the com-
munication between the analyst and stakeholders. This document is cus-
tomisable: the analyst can choose among a number of model features to
include in the report (e.g., including only a subset of the actors, concepts
or relations he or she wants more information about). The diagrams are ex-
plained in detail providing textual and tabular descriptions of the models.
An example report is provided in 3.

The current version of STS-Tool (v1.3.1) is ready for public use. This version
of the tool is the result of an iterative development process, having been tested
on multiple case studies and evaluated with practitioners [4] in the scope of the

3 http://www.sts-tool.eu/Documentation.php

http://www.sts-tool.eu
http://www.sts-tool.eu/Documentation.php

!"#$%$&'(

'&&)*+'(

,'#-.

-/0'$(1

2'(/
$#3*)4'0$*#

5"$(-$#6

'&&)*+'(

733$%$'(

%*#0)'%0

8*#0)'%0

-)'30

9)$%/

2/((/)

!"#$%$&'($0:
9')073;'#6$<(/5:

;'#6$<(/5:

;'#6$<(/5:

;'#6$<(/5: 9')073

!"#$%$&'($)*

+,((,-

,./0

'&&($%')$/#

+'(,

$#1/-2')$/#

3-$%,

!"#$%$&'(

'&&-/0'(

4'#5

5,)'$(6

!!

!!

" # $ %

+'(,7$#1/-2')$/#

8&&-/0'(7&-/0$5,5

" # $ %

!"#$%$&'(7'&&-/0'(

" # $ %

!"#$%$&'(7'&&-/0'(+'(,7$#1/-2')$/#

./0,-#2,#)7#/)1,5
3'-)91

3'-)91

Authorisation viewInformation view

allowed/prohibited
operations

goal scope

ownership

Textual description of the identified conflict

Tabs to switch between different views

expressing

security needs

document provision goal delegation

The diagram is well-formed

List of security requirements

Identification

of conflicts

through

Security Analysis

selected conflict

is visualised

information

Fig. 1: STS-Tool screenshot: multi-view modelling, automatic derivation of secu-
rity requirements, and visualisation of security analysis results

FP7 European Project Aniketos 4. It has proven suitable to model and reason
over models of a large size from different domains [2], such as eGovernment,
Telecommunications, and Air Traffic Management Control.
Acknowledgments. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant no 257930 (Aniketos) and 256980 (NESSoS).

References

1. F. Dalpiaz, E. Paja, and P. Giorgini. Security requirements engineering via com-
mitments. In Proc. of STAST’11, pages 1–8, 2011.

2. E. Paja, F. Dalpiaz, and P. Giorgini. Identifying conflicts in security require-
ments with STS-ml. TR DISI-12-041, University of Trento, http://disi.unitn.
it/~paja/tr-identifying-sec-conflicts.pdf, 2012.

3. M. P. Singh. An ontology for commitments in multiagent systems: Toward a unifi-
cation of normative concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

4. S. Trösterer, E. Beck, F. Dalpiaz, E. Paja, P. Giorgini, and M. Tscheligi. Formative
user-centered evaluation of security modeling: Results from a case study. IJSSE,
3(1):1–19, 2012.

4 http://www.aniketos.eu

http://disi.unitn.it/~paja/tr-identifying-sec-conflicts.pdf
http://disi.unitn.it/~paja/tr-identifying-sec-conflicts.pdf
http://www.aniketos.eu

	STS-Tool: Specifying and Reasoning over Socio-Technical Security Requirements

